
Measured Characteristics of FutureGrid Clouds
for Scalable Collaborative Sensor-Centric Grid Applications

Geoffrey C. Fox
School of Informatics and Computing and Community Grids Laboratory, Indiana University, Bloomington IN 47408 USA

gcf@indiana.edu

Alex Ho, Eddy Chan

Anabas, Inc., 580 California Street, Suite 1600, San Francisco, CA 94104, USA

{alex.ho, research.eddychan}@anabas.com

1. ABSTRACT

The emergence of cloud technology has raised a renewed
emphasis on the issue of scalable on-demand computing.
Cloud back-end support of small devices such as sensors
and mobile phones is one important application. We
report our preliminary study of measured characteristics
of distributed cloud computing infrastructure for
collaboration sensor-centric applications on the
FutureGrid [1, 2]. We focus on understanding the
characteristics of the underlying network and its impact
on multipoint, distributed cloud scalability. We report
our findings in areas of performance, scalability and
reliability at the network level using standard network
performance tools. We measure data at the message level
using the NaradaBrokering system [3-8] by the Indiana
University Community Grids Laboratory which supports
a large number of practical communication protocols.
Results are also presented at the collaboration and
communication applications level using the Anabas
sensor-centric grid framework [9], a message-based
sensor service management and sensor-centric application
development framework.

Geographically distributed and heterogeneous clouds in
the FutureGrid are used because of their support for
scalable simulations. Our preliminary data indicates that a
heterogeneous cloud infrastructure like FutureGrid
coupled with a flexible collaborative sensor-centric grid
framework is suitable for the study and development of
new, scalable, collaborative sensor-centric system
software and applications.

2. INTRODUCTION

Cloud computing services promise infrastructure
resources to support application scalability. There are
ample studies with systematic evaluation of this emerging
information technology infrastructure [10-19] but few are
on collaboration applications in general. There is even
fewer work on leveraging heterogeneous clouds for real-
time, distributed, collaborative sensor-centric applications
in particular.

Increased use of collaborative sensing in a wide range of
social, environmental, commercial and military types of
applications is being driven by the need for better
information about the environment or operational picture
of interest and the advancement of technology which
provides smaller, inexpensive and more capable sensors.
For instances, some collaborative sensor-centric
applications could be found in the fields of environmental
monitoring, security surveillance, or target tracking [20].
One example of an interesting application is the sharing
of filtered, neighborhood parking meter sensor
information regarding available parking spots via local
street signs to smartphones [21].

In recent years, technology has enabled a noticeable
shifting from using few expensive and feature-riched
sensors to deploying a large number of small, inexpensive
commodity sensors with some level of direct or indirect
networking capability. This technology trend should
continue for the foreseeable future. Therefore, there will
be a growing demand for scalable support of
collaborative sensor-centric applications that could utilize
a wide variety of sensor types and a massive number of
globally deployed sensors for timely and actionable
decision-support scenarios.

Our preliminary study is focused on the understanding of
the suitability of distributed clouds for scalable, real-time
collaborative sensor-centric applications. In particular, we
consider network and transport layer characteristics of

distributed clouds, and performance characteristics of
messages at some specific middleware and application
layers.

The rest of the paper is organized as follows. Firstly, we
define some key terminologies used, and revisit a general
methodology used for an earlier study [22] on the
Amazon Elastic Cloud Computing (EC2) infrastructure
which is also being used here. Secondly, we review the
technology in the collaborative sensor-centric grid
framework [9] and message broker [4, 7, 8] that we
leverage for this study. Thirdly, we give an overview of
the FutureGrid [1, 2], the underlying heterogeneous
distributed cloud infrastructure that we conduct the
experiments on. Then, we discuss the experimental setup
and report performance measurements in several
scenarios. Lastly, we present conclusions and future
work.

3. TERMINOLOGY AND METHODOLGY

Some technical terms could have different meaning when
used by researchers in different communities or
applications. This is particularly evidential in inter-
disciplinary and emerging fields. For clarity and
consistency, we highlight and recap several key
terminologies we use throughout this paper and some that
we reference.

We define collaboration as the general sharing of digital
objects, and a sensor broadly as source of a time-
dependent stream of information. We consider the
definition of real-time is application-specific. In the case
of a VoIP application, for instance, a round-trip latency of
less than 300 milliseconds is considered acceptable
timeliness while other collaborative applications could
have more stringent real-time requirements. Grids have
been extensively discussed in the literature. We adopt the
view that grids represent the system formed by the
distributed collections of digital capabilities that are
managed and coordinated to support some sort of
enterprise [23]. Clouds are commercially supported
data-center models competing with compute grids and
general-purpose computing centers [24]. Clouds do not
supplant data grids.

In our earlier study of collaborative applications [22] on
the Amazon EC2 distributed clouds, we devised a
methodology to study the characteristics of distributed
cloud computing infrastructure at the network, transport
messages, and message-based collaboration applications
levels. We were able to measure performance at the
network layer and modeled typical multipoint VoIP
application-level traffic at the transport layer. We had

access to two clouds only, those at the Amazon EC2 US-
East and Europe-West.

We adopt the same methodology in this study on
FutureGrid. However, several significant differences
exist between this study on the FutureGrid and that on the
Amazon EC2. In this study we are able to conduct
performance measurements on the network, transport
messages, and message-based collaboration applications
levels. We also extend our experiments on a
homogeneous, 2-point, EC2 clouds to a heterogeneous, 4-
point, Nimbus and Eucalyptus clouds.

4. COLLABORATIVE SENSOR-CENTRIC
GRID FRAMEWORK

In order to generate and measure collaborative sensor-
centric grid application traffic on distributed clouds we
first need tools to build a sensor-centric grid, and to
deploy and manage sensors. Instead of developing new
tools and technology for building a sensor-centric grid
and deploying and managing sensors, we reuse some of
those capabilities we developed for an earlier project,
namely a collaborative sensor-centric grid framework [9].
The framework supports the integration of a sensor-
centric grid with collaboration and other grids, and
provides a sensor interface and sensor-centric application
interface. The framework also includes GB, a grid builder
tool, for building, deploying, discovering and managing
grid services and local and remote sensors.

GB follows the idea of constructing grids of grids, which
assembles a multitude of subgrids into a mission-specific
grid application. GB is a sensor management module
which provides services for (a) defining sensor properties,
(b) deploying sensors according to defined properties, (c)
monitoring deployment status of sensors, (d) remote
management irrespective of the locations of deployed
sensors, and (e) distributed management irrespective of
the location of the operator/user. Sensor streams are
being shared in real-time with any sensor-centric
applications that are developed using the API provided by
the framework. A deployed sensor-centric grid
communicates with (a) deployed sensors irrespective of
sensor locations, (b) deployed sensor-centric applications
irrespective of application locations, and (c) Grid Builder
to mediate the collaboration among these three modules.
In this framework, a primary function of a sensor-centric
grid is to manage and broker message flows for sensor
data and controls.

A typical scenario of a collaborative sensor-centric
application using the framework encompasses a global
deployment of a large number of sensors of different

types. Each sensor (for examples, video, GPS,
video/audio, sound, light, temperature, gyroscope,
ultrasonic, or RFID) gathers data from its environment
and publishes it in real-time to a sensor-centric grid via a
sensor adapter architecture. Some types of sensors can
subscribe to other sensors’ published data in the sensor-
centric grid and provide filtering services, the results of
which are published to the sensor-centric grid like any
other sensors. A collaborative sensor-centric application
provides the application logic and user-interface to
orchestrate and manage real-time collaboration among
only those sensors of interest for timely decision-support.

A demonstrative illustration of a sensor-centric
application over the public Internet for collaborative, real-
time sensor control and video motion detection was
described in [9]. The demonstrative scenario involved the
deployment of sensors in California, Indiana and Hong
Kong. We summarily depict the scenario in Figures 1
and 2. Figure 1 shows some sensors, including a Lego
NXT Tribot, deployed in Hong Kong. Figure 2 shows a
snapshot of real-time motion control of the Hong Kong-
deployed Tribot by a California-deployed WiiMote (Wii
remote control) sensor, superimposed with the live
filtering of a video stream from a Hong Kong-deployed
webcam sensor by an Indiana-deployed software-based
video motion detection sensor, which draws a bounding
box around the area motion is detected.

Figure 1. Sensors and robot with sensor payload
deployed in Hong Kong for a collaborative sensor-
centric application demo.

Figure 2. A real-time, collaborative control of a Tribot
and sensing of motion in video stream.

For this study on FutureGrid, we develop another sensor-
centric application using the framework. We also port GB
to FutureGrid which enables us to build a sensor-centric
grid, deploy sensors and sensor-centric applications to
generate, measure and analyze specific application-level
performance on FutureGrid distributed clouds.

5. FUTUREGRID

FutureGrid [2] is a part of the TeraGrid [25]. The aim of
FutureGrid is to support the development of new system
software and applications that can be simulated in order
to accelerate the adoption of new technologies in
scientific computing. The project has several computing
clusters at different locations with a sophisticated virtual
machine and workflow-based simulation environment to
support research on cloud computing, multicore
computing, new algorithms and software paradigms.

Unlike production cloud systems like the Amazon EC2,
Microsoft Azure or Google App Engines for commercial
applications, or TeraGrid for scientific computing,
FutureGrid, by contrast, is oriented towards developing
tools and technologies rather than providing production
computational capacity [26].

FutureGrid is an infrastructure comprising currently
approximately 4,000 cores at six sites - Indiana
University (11 Teraflop IBM 1024 cores, 7 Teraflop Cray
684 cores, 5 Teraflop Disk Rich 512 cores), University of
Chicago (7 Teraflop IBM 672 cores), University of
California San Diego Supercomputing Center (7 Teraflop
IBM 672 cores), University of Florida (3 Teraflop IBM

256 cores), Purdue University (4 Teraflop Dell 384 cores)
and Texas Advanced Computing Center (8 Teraflop Dell
768 cores) - connected by a high-speed, network which is
dedicated except for public link to Texas Advanced
Computing Center. It is an experimental testbed that
could support large-scale research on distributed and
parallel systems, algorithms, middleware and applications.
Figure 3 shows the connectivity of the six sites.

Figure 3. FutureGrid connectivity.

FutureGrid includes services accessible to users to run
HPC (High Performance Computing) jobs such as MPI or
OpenMP. It also supports several Grid and Cloud
environments including the Eucalyptus and Nimbus
Clouds.

Eucalyptus [27, 28] is an open source software platform
that implements an Infrastructure-as-a-Service (IaaS)-
style cloud computing. Eucalyptus provides an Amazon
Web Services (AWS)-compliant, EC2-based web service
interface for interacting with the cloud service.
Additionally, Eucalyptus provides Walrus, an AWS
storage-compliant service, and a user interface for
managing users and images.

Nimbus is an open source toolkit that allows one to turn a
cluster into an IaaS cloud [29]. Nimbus on FutureGrid
allows users to run virtual machines on FutureGrid
hardware. A Nimbus account user can easily upload
custom-built virtual machine (VM) image or customize an
image provided by FutureGrid. When a VM is booted, it
is assigned a public IP address (and/or an optional private
address). The VM is accessible by logging in as root via
SSH. A user can then run services, perform computations,
and configure the system as desired. After using and

configuring the VM, the modified VM image can be
saved to the Nimbus image repository.

6. EXPERIMENTAL SETUP

In our study we use up to four clouds on FutureGrid. The
clouds we use are the Hotel (in University of Chicago
running Nimbus), Foxtrot (in University of Florida
running Nimbus), India (in Indiana University running
Eucalyptus) and Sierra (in San Diego Supercomputing
Center running Eucalyptus). The distributed clouds
scenarios we setup either involve pairs of clouds or a
group of four clouds. We choose m1.xlarge instances in
the Eucalyptus cloud (each m1.xlarge instance is
approximately equivalent to a 2-core Intel Xeon X5570
with 12 GB RAM) and 2 cores with 12 GB RAM in
Nimbus. The selection of m1.xlarge VM in Eucalyptus
is to ensure the Eucalyptus VMs we use for
heterogeneous distributed clouds experiments have about
the same level of computing resource as those in Nimbus.

To ensure acceptable precision of timing measurements in
a distributed environment, we use the ntpdate command
to synchronize the cloud instances we launch in our
experiments with a time server in Chicago. In a Linux
environment, which is the case in our experiments, the
use of the NTP algorithm can usually maintain time
synchronization to within 10 milliseconds over the public
Internet.

For network-level measurement, we use the ping [30] and
iperf [31] commands, both are commonly used by
network administrators to monitor network characteristics.
Ping is used to test the reachability of a host on an IP
network and measure round-trip transmission time for
ICMP echo request packets to and an ICMP response
from the target host. In the process ping records any
packet loss. Iperf is used to create TCP and UDP data
streams, and measure network throughput.

For transport-level measurement, we use
NaradaBrokering messages modeled after typical
multipoint video conferencing traffic. NaradaBrokering
servers work as an overlay transport layer to applications
by taking care of all the communication among nodes
composing the application using it NB is a middleware
working as a glue connecting remote parts of a distributed
application.

For application-level traffic generation and data
gathering, we use our collaborative sensor-centric grid
framework and the grid builder tool. In order to
investigate scalability issues, it is not practical to deploy
real sensors at large scale. Instead, we could deploy
virtual sensors. The collaborative sensor-centric grid

framework supports development and deployment of real
and/or virtual sensors. As an initial study on a multi-point
distributed cloud, we deploy virtual GPS sensors only
even though we have developed virtual sensors for RFID
and WiiMote.

6.1. NETWORK-LEVEL MEASUREMENT

We run two types of experiments. They are (a) single-pair
of cloud instances, one instance on each cloud, using
iperf for measuring bi-directional throughput between all
2-combination distributed clouds of the set of four clouds
selected (Hotel, Foxtrot, India, and Sierra); and (b) single-
pair of cloud instances, one instance on each cloud, using
the ping command together with the iperf command for
measuring packet loss and round-trip latency under
loaded and unloaded network between all 2-combination
of the set of four clouds selected.

Figure 4 shows measured total bi-directional throughput
using a range of one to sixty-four iperf connections for all
2-combination distributed clouds of the set of four
selected clouds. The legend of Figure 4 shows all six
combinations of 2-combination distributed clouds in our
setup.

Bi-directional Throughput

0

200

400

600

800

1000

1200

1400

1600

1 2 4 8 16 32 64

Number of connections

T
h

ro
u

g
h

p
u

t (
M

b
p

s)

India-Sierra India-Hotel

India-Foxtrot Sierra-Hotel

Sierra-Foxtrot Hotel-Foxtrot

Figure 4. Throughput between distributed clouds.

While the maximum bi-directional throughput between
any 2-combination ranges from 900 Mbps (on
Sierra/Foxtrot pair) to 1,400 Mbps (on India/Hotel pair),
we find the total iperf throughput in FutureGrid is over
800 Mbps when we connect any pair of cloud instances
on distinct clouds with more than 16 connections in each
direction.

As a comparison the Amazon EC2-US and EC2-EU
distributed clouds sustained a throughput of 126 Mbps at
128 iperf connections [22]. However, we note that the
maximum sustainable throughput had not been reached in
the experiments reported in [22].

We use the ping tool to measure network latency and
packet loss between two clouds. Figure 4 shows the
throughput between any 2 clouds in our experiments
either levels off or starts to level off at 32 iperf
connections for all but the connection between India and
Hotel.

For comprehensiveness the number of iperf connections
should be increased up to the point the network is
saturated to explore the elasticity of the current state of
the FutureGrid network. We use iperf with 32
connections only to generate relatively heavy traffic of a
loaded network for this initial study. We report measured
network latency and packet loss in the connections
between all 2-combination distributed clouds for both
loaded and unloaded networks.

Our results (see Table 1) show ping packet loss rates in
unloaded network for all the 2-combination of clouds
were 0%; while the highest ping packet loss rate is 0.67%
between the India/Hotel pair. The results indicate a
highly reliable FutureGrid network under the
experimental conditions.

Table 1: Inter-cloud ping packet loss rate
Instance Pair Unloaded Packet

Loss Rate
Loaded Packet
Loss Rate

India-Sierra 0% 0.33%
India-Hotel 0% 0.67%
India-Foxtrot 0% 0%
Sierra-Hotel 0% 0.33%
Sierra-Foxtrot 0% 0%
Hotel-Foxtrot 0% 0.33%

For baseline information we measure ping round-trip
latency between 2 cloud instances on Sierra for the
unloaded case and loaded cases with 16 and 32
connections before we conduct the same experiment on
distributed clouds. We find latencies for the unloaded and
the two loaded cases between two virtual machines
communicating on the same cloud no higher than 1.18
milliseconds. Thus, we could reasonably assume for the
ping experiments on distributed clouds the measured
round-trip latencies are mainly due to distance between
clouds. Virtual machine overhead is negligible in these
experiments.

Ping round-trip latency for all six combinations of pairs
of clouds is measured. We find the lowest average

round-trip latency of about 18 milliseconds between India
and Hotel in a loaded condition (see Figure 5). India and
Hotel has the shortest distance between any 2 of the four
clouds; and thus, is expected to show the lowest round-
trip latency here.

We observe the highest ping round-trip latency in a
loaded network condition is about 145 milliseconds on
the Sierra and Foxtrot connection (see Figure 6).
Although the inter-cloud latency between Sierra and
Foxtrot is the highest due to its longest distance between
any two of the four selected clouds, we note that a round-
trip latency below 300 milliseconds still meets a
requirement for acceptable quality of service for
collaboration applications with stringent network
requirement like that of VoIP [32].

India-Hot el Ping Round Trip Time

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300

Ping Sequence Number

R
T

T
 (

m
s)

Unloaded RTT Loaded RTT

Figure 5. Ping round-trip latency between India and
Hotel.

Sierra-Foxt rot Ping Round Trip Time

125

130

135

140

145

150

0 50 100 150 200 250 300

Ping Sequence Number

R
T

T
 (

m
s)

Unloaded RTT Loaded RTT

Figure 6. Ping round-trip latency between Sierra and
Foxtrot.

Overall, our limited initial results indicate that FutureGrid
can sustain at least near 1 Gbps inter-cloud throughput
and is a reliable network with low packet loss rate.

6.2. MESSAGE-LEVEL MEASUREMENT

In one set of experiments, extensive measurements are
taken to evaluate the performance, stability and reliability
characteristics for an increasingly larger collaboration
session by injecting NaradaBrokering messages. We
select the Foxtrot and Hotel, both running Nimbus
environment, for our 2-cloud distributed experiments. A
NaradaBrokering broker runs on Foxtrot. Simulated
multiple meetings with groups of 20 participants run on
Hotel.

Even though we have an actual multipoint video
conferencing application in the Anabas Impromptu
conferencing suite that could be used to generate real
video traffic, it is easier and more practical to scale the
number of users/participants at the message-level using
NaradaBrokering clients than at the application level
using real cameras and people for modeling a large-scale
video session.

Figure 7 shows latency data on the inter-cloud connection
between Foxtrot and Hotel. The average latency incurred
in a single meeting with up to about 2,400 participants is
below 50 milliseconds. Average latency jumps rapidly
when the number of participants in a single meeting is
more than 2,400. However, if a large meeting is divided
into multiple smaller ones, we find that distributed clouds
could sustain a higher aggregate total number of
participants. In our experiments we find the average
latency can be maintained below 50 milliseconds with
150 meetings, each of which has 20 participants; that is, a
total of 3,000 participants.

Figure 7. Average latencies of single and multiple
video meetings.

The average latency result indicates that multiple smaller
meetings balance the work of a NaradaBrokering broker
better. Also reflected from the experiments is that there is
message backlog on a single broker when there are more
than 2,400 participants in a single meeting or 3,000
participants in multiple meetings. When there is message
backlog on a message broker, latency will increase

rapidly. Of course NaradaBrokering can support multiple
distributed brokers to control a collaboration or sensor
network, so limits shown in Figure 7 represent limits of a
single broker and not of the system. Clouds are attractive
as they support the auto-scaling needed to add brokers on
demand.

Overall, our limited initial results of message-based
experiments indicate that FutureGrid can sustain a
throughput close to its implemented capacity of 1 Gbps
between Foxtrot and Hotel. The multiple meetings
experiment also shows clouds can support publish-
subscribe brokers effectively. Note the limit of around
3000 clients in Figure 7 was reported as 800 in earlier
work [5] showing any degradation in server performance
from using clouds is more than compensated by improved
server performance.

6.3. APPLICATION-LEVEL MEASUREMENT

In this section, we discuss measurements of the scalability
of multipoint distributed clouds on FutureGrid for
collaborative sensor-centric applications. While a main
objective of our research plan is to quantify the CPU,
memory and communication requirements of a broad
class of naturally distributed and highly scalable
collaborative sensor-centric grid applications on the
underlying distributed cloud architectures, we report our
initial observations of one such applications, namely the
collaborative sensor-centric grid framework [3], running
on several distributed cloud scenarios on FutureGrid
infrastructure as a starting point.

We develop and use virtual GPS sensors that we modeled
after real GPS sensors. These are functional virtual
sensors with reasonable design but their implementations
at this stage are not optimized in any way. Each virtual
GPS sensor streams information to the sensor-centric grid
at a rate of 1 message per second. A sensor-centric grid
application consumes all the sensor streams and computes
message latency and jitter for a range of deployed sensors.

We first establish a performance baseline by deploying as
many virtual GPS sensors as possible in one cloud
instance without hitting any critical bottlenecks in CPU or
RAM. When we deploy 100 virtual GPS sensors in an
instance in India cloud, we observe the sensors continues
running even though both idle CPU and unused RAM are
at critically low level, with idle CPU at 7% and unused
RAM at 1 GB. Since our primary focus is on distributed
cloud communication characteristics for scalable
collaborative real-time sensor-centric applications, we
want to avoid running into CPU or RAM bottlenecks in
our scalability experiment. When the number of

deployed sensors in a single cloud instance is lowered to
60, we observe idle CPU at about the 35% level.

We conduct 2 different experiments. They are (a)
establishing a baseline measurements in a single instance
in one cloud only by deploying as many virtual sensors as
possible; and (b) measurements of the communication
characteristics by deploying up to 50 virtual GPS sensors
in a single instance in each of the four selected clouds;
that is, a total of up to 200 virtual GPS sensors are
deployed in the experiment.

Figure 8. Comparing average latency of a single cloud
and 4-point distributed cloud.

Figure 9. Comparing average jitter of a single cloud
and 4-point distributed cloud.

There are three important observations related to
scalability that could be made. Firstly, as shown in Figure
8, in the case of using a single instance in one cloud only
for deploying sensors, the maximum number of virtual
GPS sensors that could be stretched in a deployment is
100 but the instance shows a critically high CPU and
RAM utilization. Such low levels of unused resources in
an instance have a high risk of running out of resources
and become unstable. In the case of running a single

instance in each of the four selected distributed clouds, it
has a much lower level of resource utility, and will be
more stable and suitable for long running simulations.
Secondly, even though the case of using a single instance
on a single cloud could be pushed to deploy 100 virtual
GPS sensors, the average latency starts to grow rapidly
after deploying 60 sensors. At the level of 80 deployed
sensors, the average latency is higher than that of the case
of the 4-point distributed cloud at the level of 200
deployed sensors. We notice that in the distributed case,
the average latency is relatively constant and sufficiently
low even for demanding network applications like VoIP
[30], and with small variations only when sensor
deployment is scaled up from 20 to 200. Thirdly, a
similar pattern is observed in the comparison of the
average jitter for the two cases (see Figure 9). In the case
of sensor deployment in a single instance in one cloud
only, average jitter is low until after deploying 60 sensors.
At the level of 80 deployed sensors, the average jitter is
already higher than that of the distributed case for 200
deployed sensors.

Overall, our limited initial results indicate distributed
clouds has an encouraging potential to support scalable
collaborative sensor-centric applications that have
stringent throughput, latency, jitter and reliability
requirements.

6.4. CONCLUSION

We conducted three types of experiments on FutureGrid
to understand its performance characteristics in
distributed clouds setting to support scalable collaborative
sensor-centric applications. We ported the Grid Builder
to FutureGrid and developed virtual GPS sensors for
managing the scaling of application-level deployed
sensors to a large number. We measured FutureGrid
distributed clouds characteristics at the network, transport
and application levels. Although this study is preliminary,
we observe satisfactory performance characteristics for
network, CPU and memory demanding simulations that
are used as tools in our experiments. We conclude that
coupling a flexible sensor-centric grid framework with a
heterogeneous distributed clouds infrastructure like
FutureGrid has the potential to effectively support the
study of large-scale, collaborative sensor-centric
applications that have stringent real-time and quality of
service requirements.

Future work includes a better understanding of how to
fully utilize the potential of a single instance to
confidently simulate the optimal or near-optimal number
of sensors possible without worrying about system
abnormality due risks of running out of resources in an
instance. Scalability in terms of using more instances per

cloud should be incorporated to augment scalability in the
number of distributed clouds.

KEYWORDS: distributed cloud, heterogeneous cloud,
collaboration, sensor-centric applications, scalability,
FutureGrid

6.5. ACKNOWLEGMENTS

We thank Bill McQuay of AFRL, Ryan Hartman of
Indiana University and Gary Whitted of Ball Aerospace
for their important support of the work. This material is
based upon work supported in part by the National
Science Foundation under Grant No. 0910812 to Indiana
University for "FutureGrid: An Experimental, High-
Performance Grid Test-bed." Other partners in the
FutureGrid project include U. Chicago, U. Florida, San
Diego Supercomputer Center - UC San Diego, U.
Southern California, U. Texas at Austin, U. Tennessee at
Knoxville, U. of Virginia.

7. BIOGRAPHY

GEOFFREY C. FOX received a Ph.D. in Theoretical
Physics from Cambridge University and is now the
Associate Dean for Research and Graduate Studies at the
School of Informatics and Computing Indiana University
Bloomington and professor of Computer Science,
Informatics, and Physics at Indiana University where he
is director of the Community Grids Laboratory. He
previously held positions at Caltech, Syracuse University
and Florida State University.

ALEX HO is the CEO of Anabas, Inc. He was a staff
scientist with the IBM Research Division and the Caltech
Concurrent Computation Program for over ten years. He
was the founder and co-founder of several Silicon Valley
startups in the areas of collaboration and Internet media
technology.

EDDY CHAN is an R&D engineer. He has conducted
extensive research in ad-hoc wireless network and Voice
over IP, and is focusing on message-based collaboration
technology.

8. REFERENCES

1. Geoffrey Fox. FutureGrid Platform
FGPlatform: Rationale and Possible Directions (White
Paper). 2010 [accessed 2010 June 12]; Available from:
http://grids.ucs.indiana.edu/ptliupages/publications/FGPla
tform.docx.
2. FutureGrid Homepage. [accessed 2011 January
19]; Available from: http://www.futuregrid.org.

3. Wenjun Wu, Geoffrey Fox, Hasan Bulut, Ahmet
Uyar, and Tao Huang, Special Issue on Voice over IP
edited by John Fox, P. Gburzynski: Service Oriented
Architecture for VoIP conferencing Theory and Practice
of the International Journal of Communication Systems
April 13, 2006. 19(4): p. 445-461.
DOI:http://dx.doi.org/10.1002/dac.803.
http://grids.ucs.indiana.edu/ptliupages/publications/soa-
voip-05.doc
4. Shrideep Pallickara, Hasan Bulut, Pete Burnap,
Geoffrey Fox, Ahmet Uyar, and David Walker. Support
for High Performance Real-time Collaboration within the
NaradaBrokering Substrate. 2005 May [accessed 2011
March 11]; Available from:
http://grids.ucs.indiana.edu/ptliupages/publications/NB-
Collaboration_update.pdf.
5. Ahmet Uyar and Geoffrey Fox, Investigating the
Performance of Audio/Video Service Architecture I:
Single Broker, in IEEE International Symposium on
Collaborative Technologies and Systems CTS05. May,
2005, IEEE. St. Louis Missouri, USA. pages. 120-127.
http://grids.ucs.indiana.edu/ptliupages/publications/Single
Broker-cts05-submitted.PDF. DOI:
http://doi.ieeecomputersociety.org/10.1109/ISCST.2005.1
553303.
6. Ahmet Uyar and Geoffrey Fox, Investigating the
Performance of Audio/Video Service Architecture II:
Broker Network, in International Symposium on
Collaborative Technologies and Systems CTS05. May,
2005, IEEE. St. Louis Missouri, USA. pages. 128-135.
http://grids.ucs.indiana.edu/ptliupages/publications/Broke
rNetwork-cts05-final.PDF. DOI:
http://doi.ieeecomputersociety.org/10.1109/ISCST.2005.1
553304.
7. NaradaBrokering. Scalable Publish Subscribe
System. 2010 [accessed 2010 May]; Available from:
http://www.naradabrokering.org/.
8. Pallickara, S. and G. Fox, NaradaBrokering: a
distributed middleware framework and architecture for
enabling durable peer-to-peer grids, in
ACM/IFIP/USENIX 2003 International Conference on
Middleware. 2003, Springer-Verlag New York, Inc. Rio
de Janeiro, Brazil.
9. Geoffrey Fox, Alex Ho, Rui Wang, Edward Chu,
and Isaac Kwan, A Collaborative Sensor Grids
Framework, in 2008 International Symposium on
Collaborative Technologies and Systems (CTS 2008).
May 19-23, 2008. The Hyatt Regency Irvine, Irvine,
California, USA.
http://grids.ucs.indiana.edu/ptliupages/publications/CTS0
8_paper_final.pdf.
10. Keith R. Jackson, Lavanya Ramakrishnan, Karl J.
Runge, and Rollin C. Thomas, Seeking supernovae in the
clouds: a performance study, in Proceedings of the 19th
ACM International Symposium on High Performance

Distributed Computing. 2010, ACM. Chicago, Illinois.
pages. 421-429.
http://dsl.cs.uchicago.edu/ScienceCloud2010/p07.pdf.
DOI: 10.1145/1851476.1851538.
11. Keith R. Jackson, Lavanya Ramakrishnan,
Krishna Muriki, Shane Canon, Shreyas Cholia, J. Shalf,
Harvey J. Wasserman, and N.J. Wright, Performance
Analysis of High Performance Computing Applications
on the Amazon Web Services Cloud, in CloudCom. 2010,
IEEE. Indianapolis.
http://www.nersc.gov/projects/reports/technical/CloudCo
m.pdf.
12. Wei Lu, Jared Jackson, Jaliya Ekanayake, Roger
Barga, and Nelson Araujo, Performing Large Science
Experiments on Azure: Pitfalls and Solutions, in
CloudCom. 2010, IEEE. Indianapolis. pages. 209-219.
13. Wei Lu, Jared Jackson, and Roger Barga,
AzureBlast: A Case Study of Developing Science
Applications on the Cloud, in ScienceCloud: 1st
Workshop on Scientific Cloud Computing co-located with
HPDC 2010 (High Performance Distributed Computing).
June 21, 2010, ACM. Chicago, IL.
http://dsl.cs.uchicago.edu/ScienceCloud2010/p06.pdf.
14. Jaliya Ekanayake and Geoffrey Fox, High
Performance Parallel Computing with Clouds and Cloud
Technologies, in First International Conference
CloudComp on Cloud Computing. October 19 - 21, 2009.
Munich, Germany.
http://grids.ucs.indiana.edu/ptliupages/publications/cloud
comp_camera_ready.pdf.
15. Judy Qiu, Thilina Gunarathne, Jaliya Ekanayake,
Jong Youl Choi, Seung-Hee Bae, Hui Li, Bingjing Zhang,
Yang Ryan, Saliya Ekanayake, Tak-Lon Wu, Scott
Beason, Adam Hughes, and Geoffrey Fox, Hybrid Cloud
and Cluster Computing Paradigms for Life Science
Applications, in 11th Annual Bioinformatics Open Source
Conference BOSC 2010. July 9-10, 2010. Boston.
http://grids.ucs.indiana.edu/ptliupages/publications/Hybri
dCloudandClusterComputingParadigmsforLifeScienceAp
plications.pdf.
16. Jaliya Ekanayake, Thilina Gunarathne, Judy Qiu,
Geoffrey Fox, Scott Beason, Jong Youl Choi, Yang Ruan,
Seung-Hee Bae, and Hui Li, Applicability of DryadLINQ
to Scientific Applications. January 30, 2010, Community
Grids Laboratory, Indiana University.
http://grids.ucs.indiana.edu/ptliupages/publications/Dryad
Report.pdf.
17. Katarzyna Keahey, Mauricio Tsugawa, Andrea
Matsunaga, and Jose Fortes, Sky Computing. Internet
Computing, IEEE, 2009. 13: p. 43-51.
DOI:http://doi.ieeecomputersociety.org/10.1109/MIC.200
9.94.
http://www.nimbusproject.org/files/Sky_Computing.pdf

18. Mauricio Tsugawa and Jose Fortes. ViNe:
Managed virtual networks in Grids. [accessed 2010 20
November]; Available from: http://vine.acis.ufl.edu/.
19. M. Tsugawa and J.A.B. Fortes, A virtual network
(ViNe) architecture for grid computing, in International
Parallel & Distributed Processing Symposium. 2006,
IEEE. Rhodes Island, Greece. pages. 123.
20. Biswas, S., S. Gupta, F. Yu, and T. Wu, A
networked mobile sensor test-bed for collaborative multi-
target tracking applications. Wirel. Netw., 2010. 16(5): p.
1329-1344. DOI:10.1007/s11276-009-0206-x
21. John Markoff. Can’t Find a Parking Spot?
Check Smartphone. 2008 July 21 [accessed 2011 March
12]; New York Times Available from:
http://www.nytimes.com/2008/07/12/business/12newpark
.html.
22. Geoffrey Fox, Alex Ho, Eddy Chan, and
William Wang, Measured Characteristics of Distributed
Cloud Computing Infrastructure for Message-based
Collaboration Applications, in International Symposium
on Collaborative Technologies and Systems CTS 2009.
May 18-22, 2009, IEEE. The Westin Baltimore
Washington International Airport Hotel Baltimore,
Maryland, USA. pages. 465-467.
http://grids.ucs.indiana.edu/ptliupages/publications/Senso
rClouds.pdf. DOI: 10.1109/cts.2009.5067515.
23. Fox, G., Grids of Grids of Simple Services.
Computing in Science and Engg., 2004. 6(4): p. 84-87.
DOI:10.1109/mcse.2004.10.
http://grids.ucs.indiana.edu/ptliupages/publications/Cisegr
idofgrids.pdf
24. Geoffrey Fox. Cloud Computing for ADMI.
2010 [accessed 2011 March 11]; ADMI Board Meeting
and faculty workshop at Elizabeth City State University
Available from:
http://grids.ucs.indiana.edu/ptliupages/presentations/ECS
U-Dec16-10.pptx.
25. TeraGrid open scientific discovery
computational infrastructure. [accessed 2010 November
20]; Available from: https://www.teragrid.org/.
26. Geoffrey Fox. Interview on FutureGrid. 2009
September 29 [accessed 2011 March 11]; by Sander
Olson Available from:
http://nextbigfuture.com/2009/09/interview-of-geoffrey-
fox-director-of.html.
27. Nurmi D., Wolski R., Grzegorczyk C., Obertelli
G., Soman S., Youseff L., and Zagorodnov D., The
Eucalyptus Open-Source Cloud-Computing System, in 9th
IEEE/ACM International Symposium on Cluster
Computing and the Grid. CCGRID '09. 18-21 May, 2009.
Shanghai. pages. 124-131. DOI:
10.1109/CCGRID.2009.93.
28. Eucalyptus Open Source Cloud Software.
Available from: http://open.eucalyptus.com/.

29. Nimbus Cloud Computing for Science.
[accessed 2011 March 11]; Available from:
http://www.nimbusproject.org/.
30. Ping computer network administration utility
used to test the reachability of a host on an Internet
Protocol (IP) network and to measure message round-trip
time. [accessed 2011 March 20]; Wikipedia Entry
Available from: http://en.wikipedia.org/wiki/Ping.
31. Iperf network testing tool that can create TCP
and UDP data streams and measure the throughput of
network carrying them. [accessed 2011 March 20];
Wikipedia Entry Available from:
http://en.wikipedia.org/wiki/Iperf.
32. Tim Szigeti and Christina Hattingh, Quality of
Service Design Overview. 2004: Cisco Press.
http://www.ciscopress.com/articles/article.asp?p=357102
&seqNum=3

