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1. ABSTRACT 
 
The emergence of cloud technology has raised a renewed 
emphasis on the issue of scalable on-demand computing. 
Cloud back-end support of small devices such as sensors 
and mobile phones is one important application. We 
report our preliminary study of measured characteristics 
of distributed cloud computing infrastructure for 
collaboration sensor-centric applications on the 
FutureGrid [1, 2].  We focus on understanding the 
characteristics of the underlying network and its impact 
on multipoint, distributed cloud scalability.  We report 
our findings in areas of performance, scalability and 
reliability at the network level using standard network 
performance tools. We measure data at the message level 
using the NaradaBrokering system [3-8] by the Indiana 
University Community Grids Laboratory which supports 
a large number of practical communication protocols. 
Results are also presented at the collaboration and 
communication applications level using the Anabas 
sensor-centric grid framework [9], a message-based 
sensor service management and sensor-centric application 
development framework.  
 
Geographically distributed and heterogeneous clouds in 
the FutureGrid are used because of their support for 
scalable simulations. Our preliminary data indicates that a 
heterogeneous cloud infrastructure like FutureGrid 
coupled with a flexible collaborative sensor-centric grid 
framework is suitable for the study and development of 
new, scalable, collaborative sensor-centric system 
software and applications. 
 
2. INTRODUCTION 
 
 
 
 

Cloud computing services promise infrastructure 
resources to support application scalability.  There are 
ample studies with systematic evaluation of this emerging 
information technology infrastructure [10-19] but few are 
on collaboration applications in general. There is even 
fewer work on leveraging heterogeneous clouds for real-
time, distributed, collaborative sensor-centric applications 
in particular.   
 
Increased use of collaborative sensing in a wide range of 
social, environmental, commercial and military types of 
applications is being driven by the need for better 
information about the environment or operational picture 
of interest and the advancement of technology which 
provides smaller, inexpensive and more capable sensors. 
For instances, some collaborative sensor-centric 
applications could be found in the fields of environmental 
monitoring, security surveillance, or target tracking [20].   
One example of an interesting application is the sharing 
of filtered, neighborhood parking meter sensor 
information regarding available parking spots via local 
street signs to smartphones [21].   
 
In recent years, technology has enabled a noticeable 
shifting from using few expensive and feature-riched 
sensors to deploying a large number of small, inexpensive 
commodity sensors with some level of direct or indirect 
networking capability.  This technology trend should 
continue for the foreseeable future. Therefore, there will 
be a growing demand for scalable support of 
collaborative sensor-centric applications that could utilize 
a wide variety of sensor types and a massive number of 
globally deployed sensors for timely and actionable 
decision-support   scenarios.  
 
Our preliminary study is focused on the understanding of 
the suitability of distributed clouds for scalable, real-time 
collaborative sensor-centric applications. In particular, we 
consider network and transport layer characteristics of 



distributed clouds, and performance characteristics of 
messages at some specific middleware and application 
layers.  
 
The rest of the paper is organized as follows. Firstly, we 
define some key terminologies used, and revisit a general 
methodology used for an earlier study [22] on the 
Amazon Elastic Cloud Computing (EC2) infrastructure 
which is also being used here. Secondly, we review the 
technology in the collaborative sensor-centric grid 
framework [9] and message broker [4, 7, 8] that we 
leverage for this study.  Thirdly, we give an overview of 
the FutureGrid [1, 2], the underlying heterogeneous 
distributed cloud infrastructure that we conduct the 
experiments on.  Then, we discuss the experimental setup 
and report performance measurements in several 
scenarios.  Lastly, we present conclusions and future 
work. 
 
3. TERMINOLOGY AND METHODOLGY 
 
Some technical terms could have different meaning when 
used by researchers in different communities or 
applications. This is particularly evidential in inter-
disciplinary and emerging fields.  For clarity and 
consistency, we highlight and recap several key 
terminologies we use throughout this paper and some that 
we reference.   
 
We define collaboration as the general sharing of digital 
objects, and a sensor broadly as source of a time-
dependent stream of information.  We consider the 
definition of real-time is application-specific. In the case 
of a VoIP application, for instance, a round-trip latency of 
less than 300 milliseconds is considered acceptable 
timeliness while other collaborative applications could 
have more stringent real-time requirements.  Grids have 
been extensively discussed in the literature.  We adopt the 
view that grids represent the system formed by the 
distributed collections of digital capabilities that are 
managed and coordinated to support some sort of 
enterprise [23].   Clouds are commercially supported 
data-center models competing with compute grids and 
general-purpose computing centers [24]. Clouds do not 
supplant data grids. 
 
In our earlier study of collaborative applications [22] on 
the Amazon EC2 distributed clouds, we devised a 
methodology to study the characteristics of distributed 
cloud computing infrastructure at the network, transport 
messages, and message-based collaboration applications 
levels.  We were able to measure performance at the 
network layer and modeled typical multipoint VoIP 
application-level traffic at the transport layer.  We had 

access to two clouds only, those at the Amazon EC2 US-
East and Europe-West. 
 
We adopt the same methodology in this study on 
FutureGrid.  However, several significant differences 
exist between this study on the FutureGrid and that on the 
Amazon EC2. In this study we are able to conduct 
performance measurements on the network, transport 
messages, and message-based collaboration applications 
levels.  We also extend our experiments on a 
homogeneous, 2-point, EC2 clouds to a heterogeneous, 4-
point, Nimbus and Eucalyptus clouds.     
 
4. COLLABORATIVE SENSOR-CENTRIC 
GRID FRAMEWORK 
 
In order to generate and measure collaborative sensor-
centric grid application traffic on distributed clouds we 
first need tools to build a sensor-centric grid, and to 
deploy and manage sensors.  Instead of developing new 
tools and technology for building a sensor-centric grid 
and deploying and managing sensors, we reuse some of 
those capabilities we developed for an earlier project, 
namely a collaborative sensor-centric grid framework [9].  
The framework supports the integration of a sensor-
centric grid with collaboration and other grids, and 
provides a sensor interface and sensor-centric application 
interface. The framework also includes GB, a grid builder 
tool, for building, deploying, discovering and managing 
grid services and local and remote sensors.  
 
GB follows the idea of constructing grids of grids, which 
assembles a multitude of subgrids into a mission-specific 
grid application.   GB is a sensor management module 
which provides services for (a) defining sensor properties, 
(b) deploying sensors according to defined properties, (c) 
monitoring deployment status of sensors, (d) remote 
management irrespective of the locations of deployed 
sensors, and (e) distributed management irrespective of 
the location of the operator/user.  Sensor streams are 
being shared in real-time with any sensor-centric 
applications that are developed using the API provided by 
the framework.  A deployed sensor-centric grid 
communicates with (a) deployed sensors irrespective of 
sensor locations, (b) deployed sensor-centric applications 
irrespective of application locations, and (c) Grid Builder 
to mediate the collaboration among these three modules.  
In this framework, a primary function of a sensor-centric 
grid is to manage and broker message flows for sensor 
data and controls. 
 
A typical scenario of a collaborative sensor-centric 
application using the framework encompasses a global 
deployment of a large number of sensors of different 



types. Each sensor (for examples, video, GPS, 
video/audio, sound, light, temperature, gyroscope, 
ultrasonic, or RFID) gathers data from its environment 
and publishes it in real-time to a sensor-centric grid via a 
sensor adapter architecture.  Some types of sensors can 
subscribe to  other sensors’ published data in the sensor-
centric grid and provide filtering services, the results of 
which are published to the sensor-centric grid like any 
other sensors.  A collaborative sensor-centric application 
provides the application logic and user-interface to 
orchestrate and manage real-time collaboration among 
only those sensors of interest for timely decision-support. 
 
A demonstrative illustration of a sensor-centric 
application over the public Internet for collaborative, real-
time sensor control and video motion detection was 
described in [9]. The demonstrative scenario involved the 
deployment of sensors in California, Indiana and Hong 
Kong.  We summarily depict the scenario in Figures 1 
and 2.  Figure 1 shows some sensors, including a Lego 
NXT Tribot, deployed in Hong Kong.  Figure 2 shows a 
snapshot of real-time motion control of the Hong Kong-
deployed Tribot by a California-deployed WiiMote (Wii 
remote control) sensor, superimposed with the live 
filtering of a video stream from a Hong Kong-deployed 
webcam sensor by an Indiana-deployed software-based 
video motion detection sensor, which draws a bounding 
box around the area motion is detected. 
 
 

           
Figure 1.  Sensors and robot with sensor payload 
deployed in Hong Kong for a collaborative sensor-
centric application demo. 

 
Figure 2. A real-time, collaborative control of a Tribot 
and sensing of motion in video stream.  
 
For this study on FutureGrid, we develop another sensor-
centric application using the framework. We also port GB 
to FutureGrid which enables us to build a sensor-centric 
grid, deploy sensors and sensor-centric applications to 
generate, measure and analyze specific application-level 
performance on FutureGrid distributed clouds.   
 
5. FUTUREGRID 
 
FutureGrid [2] is a part of the TeraGrid [25].   The aim of 
FutureGrid is to support the development of new system 
software and applications that can be simulated in order 
to accelerate the adoption of new technologies in 
scientific computing.  The project has several computing 
clusters at different locations with a sophisticated virtual 
machine and workflow-based simulation environment to 
support research on cloud computing, multicore 
computing, new algorithms and software paradigms. 
 
Unlike production cloud systems like the Amazon EC2, 
Microsoft Azure or Google App Engines for commercial 
applications, or TeraGrid for scientific computing, 
FutureGrid, by contrast, is oriented towards developing 
tools and technologies rather than providing production 
computational capacity [26]. 
 
FutureGrid is an infrastructure comprising currently 
approximately 4,000 cores at six sites - Indiana 
University (11 Teraflop IBM 1024 cores, 7 Teraflop Cray 
684 cores, 5 Teraflop Disk Rich 512 cores), University of 
Chicago (7 Teraflop IBM 672 cores), University of 
California San Diego Supercomputing Center (7 Teraflop 
IBM 672 cores), University of Florida (3 Teraflop IBM 



256 cores), Purdue University (4 Teraflop Dell 384 cores) 
and Texas Advanced Computing Center (8 Teraflop Dell 
768 cores) - connected by a high-speed, network which is 
dedicated except for public link to Texas Advanced 
Computing Center.  It is an experimental testbed that 
could support large-scale research on distributed and 
parallel systems, algorithms, middleware and applications.   
Figure 3 shows the connectivity of the six sites. 
 

 
Figure 3. FutureGrid connectivity. 
 
FutureGrid includes services accessible to users to run 
HPC (High Performance Computing) jobs such as MPI or 
OpenMP. It also supports  several Grid and Cloud 
environments including the Eucalyptus and Nimbus 
Clouds.  
 
Eucalyptus [27, 28] is an open source software platform 
that implements an Infrastructure-as-a-Service (IaaS)-
style cloud computing. Eucalyptus provides an Amazon 
Web Services (AWS)-compliant, EC2-based web service 
interface for interacting with the cloud service.  
Additionally, Eucalyptus provides Walrus, an AWS 
storage-compliant service, and a user interface for 
managing users and images.  
 
Nimbus is an open source toolkit that allows one to turn a 
cluster into an IaaS cloud [29]. Nimbus on FutureGrid 
allows users to run virtual machines on FutureGrid 
hardware. A Nimbus account user can easily upload 
custom-built virtual machine (VM) image or customize an 
image provided by FutureGrid. When a VM is booted, it 
is assigned a public IP address (and/or an optional private 
address). The VM is accessible by logging in as root via 
SSH. A user can then run services, perform computations, 
and configure the system as desired.  After using and 

configuring the VM, the modified VM image can be 
saved to the Nimbus image repository. 
 
6. EXPERIMENTAL SETUP 
 
In our study we use up to four clouds on FutureGrid. The 
clouds we use are the Hotel (in University of Chicago 
running Nimbus), Foxtrot (in University of Florida 
running Nimbus), India (in Indiana University running 
Eucalyptus) and Sierra (in San Diego Supercomputing 
Center running Eucalyptus).  The distributed clouds 
scenarios we setup either involve pairs of clouds or a 
group of four clouds.  We choose m1.xlarge instances in 
the Eucalyptus cloud (each m1.xlarge instance is 
approximately equivalent to a 2-core Intel Xeon X5570 
with 12 GB RAM) and 2 cores with 12 GB RAM in 
Nimbus.   The selection of m1.xlarge VM in Eucalyptus 
is to ensure the Eucalyptus VMs we use for 
heterogeneous distributed clouds experiments have about 
the same level of computing resource as those in Nimbus.   
 
To ensure acceptable precision of timing measurements in 
a distributed environment, we use the ntpdate command 
to synchronize the cloud instances we launch in our 
experiments with a time server in Chicago.  In a Linux 
environment, which is the case in our experiments, the 
use of the NTP algorithm can usually maintain time 
synchronization to within 10 milliseconds over the public 
Internet. 
 
For network-level measurement, we use the ping [30] and 
iperf [31] commands, both are commonly used by 
network administrators to monitor network characteristics. 
Ping is used to test the reachability of a host on an IP 
network and measure round-trip transmission time for 
ICMP echo request packets to and an ICMP response 
from the target host.  In the process ping records any 
packet loss.  Iperf is used to create TCP and UDP data 
streams, and measure network throughput.    
 
For transport-level measurement, we use 
NaradaBrokering messages modeled after typical 
multipoint video conferencing traffic.  NaradaBrokering 
servers work as an overlay transport layer to applications 
by taking care of all the communication among nodes 
composing the application using it  NB is a middleware 
working as a glue connecting remote parts of a distributed 
application. 
 
For application-level traffic generation and data 
gathering, we use our collaborative sensor-centric grid 
framework and the grid builder tool.   In order to 
investigate scalability issues, it is not practical to deploy 
real sensors at large scale.  Instead, we could deploy 
virtual sensors.   The collaborative sensor-centric grid 



framework supports development and deployment of real 
and/or virtual sensors. As an initial study on a multi-point 
distributed cloud, we deploy virtual GPS sensors only 
even though we have developed virtual sensors for RFID 
and WiiMote.     
 
6.1. NETWORK-LEVEL MEASUREMENT 
 
We run two types of experiments. They are (a) single-pair 
of cloud instances, one instance on each cloud, using 
iperf for measuring bi-directional throughput between all 
2-combination distributed clouds of the set of four clouds 
selected (Hotel, Foxtrot, India, and Sierra); and (b) single-
pair of cloud instances, one instance on each cloud, using 
the ping command together with the iperf command for 
measuring packet loss and round-trip latency under 
loaded and unloaded network between all 2-combination 
of the set of four clouds selected. 
 
Figure 4 shows measured total bi-directional throughput 
using a range of one to sixty-four iperf connections for all 
2-combination distributed clouds of the set of four 
selected clouds. The legend of Figure 4 shows all six 
combinations of 2-combination distributed clouds in our 
setup.  
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Figure 4. Throughput between distributed clouds. 
 
While the maximum bi-directional throughput between 
any 2-combination ranges from 900 Mbps (on 
Sierra/Foxtrot pair) to 1,400 Mbps (on India/Hotel pair), 
we find the total iperf throughput in FutureGrid is over 
800 Mbps when we connect any pair of cloud instances 
on distinct clouds with more than 16 connections in each 
direction. 

As a comparison the Amazon EC2-US and EC2-EU 
distributed clouds sustained a throughput of 126 Mbps at 
128 iperf connections [22].  However, we note that the 
maximum sustainable throughput had not been reached in 
the experiments reported in [22].   
 
We use the ping tool to measure network latency and 
packet loss between two clouds.  Figure 4 shows  the 
throughput between any 2 clouds in our experiments 
either levels off or starts to level off at 32 iperf 
connections for all but the connection between India and 
Hotel.  
 
For comprehensiveness the number of  iperf connections 
should be increased up to the point the network is 
saturated to explore the elasticity of the current state of 
the FutureGrid network. We use iperf with 32 
connections only to generate relatively heavy traffic of a 
loaded network for this initial study.  We report measured 
network latency and packet loss in the connections 
between all 2-combination distributed clouds for both 
loaded and unloaded networks. 
 
Our results (see Table 1) show ping packet loss rates in 
unloaded network for all the 2-combination of clouds 
were 0%; while the highest ping packet loss rate is 0.67% 
between the India/Hotel pair.  The results indicate a 
highly reliable FutureGrid network under the 
experimental conditions. 
 
Table 1: Inter-cloud ping packet loss rate 
Instance Pair Unloaded Packet 

Loss Rate 
Loaded Packet 
Loss Rate 

India-Sierra 0% 0.33% 
India-Hotel 0% 0.67% 
India-Foxtrot 0% 0% 
Sierra-Hotel 0% 0.33% 
Sierra-Foxtrot 0% 0% 
Hotel-Foxtrot 0% 0.33% 
 
For baseline information we measure ping round-trip 
latency between 2 cloud instances on Sierra for the 
unloaded case and loaded cases with 16 and 32 
connections before we conduct the same experiment on 
distributed clouds. We find latencies for the unloaded and 
the two loaded cases between two virtual machines 
communicating on the same cloud no higher than 1.18 
milliseconds.  Thus, we could reasonably assume for the 
ping experiments on distributed clouds the measured 
round-trip latencies are mainly due to distance between 
clouds. Virtual machine overhead is negligible in these 
experiments. 
 
Ping round-trip latency for all six combinations of pairs 
of clouds is measured.  We find the lowest average 



round-trip latency of about 18 milliseconds between India 
and Hotel in a loaded condition (see Figure 5).  India and 
Hotel has the shortest distance between any 2 of the four 
clouds; and thus, is expected to show the lowest round-
trip latency here. 
 
We observe the highest ping round-trip latency in a 
loaded network condition is about 145 milliseconds on 
the Sierra and Foxtrot connection (see Figure 6). 
Although the inter-cloud latency between Sierra and 
Foxtrot is the highest due to its longest distance between 
any two of the four selected clouds, we note that a round-
trip latency below 300 milliseconds still meets a 
requirement for acceptable quality of service for 
collaboration applications with stringent network 
requirement like that of VoIP [32]. 
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Overall, our limited initial results indicate that FutureGrid 
can sustain at least near 1 Gbps inter-cloud throughput 
and is a reliable network with low packet loss rate. 
 
6.2. MESSAGE-LEVEL MEASUREMENT 

In one set of experiments, extensive measurements are 
taken to evaluate the performance, stability and reliability 
characteristics for an increasingly larger collaboration 
session by injecting NaradaBrokering messages.   We 
select the Foxtrot and Hotel, both running Nimbus 
environment, for our 2-cloud distributed experiments. A 
NaradaBrokering broker runs on Foxtrot. Simulated 
multiple meetings with groups of 20 participants run on 
Hotel.   
 
Even though we have an actual multipoint video 
conferencing application in  the Anabas Impromptu 
conferencing suite that could be used to generate real 
video traffic, it is easier and more practical to scale the 
number of users/participants at the message-level using 
NaradaBrokering clients than at the application level 
using real cameras and people for modeling a large-scale 
video session. 
 
Figure 7 shows latency data on the inter-cloud connection 
between Foxtrot and Hotel. The average latency incurred 
in a single meeting with up to about 2,400 participants is 
below 50 milliseconds.  Average latency jumps rapidly 
when the number of participants in a single meeting is 
more than 2,400.  However, if a large meeting is divided 
into multiple smaller ones, we find that distributed clouds 
could sustain a higher aggregate total number of 
participants.  In our experiments we find the average 
latency can be maintained below 50 milliseconds  with 
150 meetings, each of which has 20 participants; that is, a 
total of 3,000 participants.  
 

 
Figure 7. Average latencies of single and multiple 
video meetings. 
 
The average latency result indicates that multiple smaller 
meetings balance the work of a NaradaBrokering broker 
better.  Also reflected from the experiments is that there is 
message backlog on a single broker when there are more 
than 2,400 participants in a single meeting or 3,000 
participants in multiple meetings.  When there is message 
backlog on a message broker, latency will increase 



rapidly.  Of course NaradaBrokering can support multiple 
distributed brokers to control a collaboration or sensor 
network, so limits shown in Figure 7 represent limits of a 
single broker and not of the system. Clouds are attractive 
as they support the auto-scaling needed to add brokers on 
demand. 
 
Overall, our limited initial results of message-based 
experiments indicate that FutureGrid can sustain a 
throughput close to its implemented capacity of 1 Gbps 
between Foxtrot and Hotel. The multiple meetings 
experiment also shows clouds can support publish-
subscribe brokers effectively. Note the limit of around 
3000 clients in Figure 7 was reported as 800 in earlier 
work [5] showing any degradation in server performance 
from using clouds is more than compensated by improved 
server performance. 
  
6.3. APPLICATION-LEVEL MEASUREMENT 
 
In this section, we discuss measurements of the scalability 
of multipoint distributed clouds on FutureGrid for 
collaborative sensor-centric applications.  While a main 
objective of our research plan is to quantify the CPU, 
memory and communication requirements of a broad 
class of naturally distributed and highly scalable 
collaborative sensor-centric grid applications on the 
underlying distributed cloud architectures,  we report our 
initial observations of one such applications, namely the 
collaborative sensor-centric grid framework [3], running 
on several distributed cloud scenarios on FutureGrid 
infrastructure as a starting point.  
 
We develop and use virtual GPS sensors that we modeled 
after real GPS sensors.  These are functional virtual 
sensors with reasonable design but their implementations 
at this stage are not optimized in any way.  Each virtual 
GPS sensor streams information to the sensor-centric grid 
at a rate of 1 message per second.  A sensor-centric grid 
application consumes all the sensor streams and computes 
message latency and jitter for a range of deployed sensors. 
 
We first establish a performance baseline by deploying as 
many virtual GPS sensors as possible in one cloud 
instance without hitting any critical bottlenecks in CPU or 
RAM.  When we deploy 100 virtual GPS sensors in an 
instance in India cloud, we observe the sensors continues 
running even though both idle CPU and unused RAM are 
at critically low level, with idle CPU at 7% and unused 
RAM at 1 GB.  Since our primary focus is on distributed 
cloud communication characteristics for scalable 
collaborative real-time sensor-centric applications, we 
want to avoid running into CPU or RAM bottlenecks in 
our scalability experiment.   When the number of 

deployed sensors in a single cloud instance is lowered to 
60, we observe idle CPU at about the 35% level. 
 
We conduct 2 different experiments.  They are (a) 
establishing a baseline measurements in a single instance 
in one cloud only by deploying as many virtual sensors as 
possible; and (b) measurements of the communication 
characteristics by deploying up to 50 virtual GPS sensors 
in a single instance in each of the four selected clouds; 
that is, a total of up to 200 virtual GPS sensors are 
deployed in the experiment.  
 

 
Figure 8. Comparing average latency of a single cloud 
and 4-point distributed cloud. 
 

 
Figure 9. Comparing average jitter of a single cloud 
and 4-point distributed cloud. 
 
There are three important observations related to 
scalability that could be made. Firstly, as shown in Figure 
8, in the case of using a single instance in one cloud only 
for deploying sensors, the maximum number of virtual 
GPS sensors that could be stretched in a deployment is 
100 but the instance shows a critically high CPU and 
RAM utilization.  Such low levels of unused resources in 
an instance have a high risk of running out of resources 
and become unstable.  In the case of running a single 



instance in each of the four selected distributed clouds, it 
has a much lower level of resource utility, and will be 
more stable and suitable for long running simulations.  
Secondly, even though the case of using a single instance 
on a single cloud could be pushed to deploy 100 virtual 
GPS sensors, the average latency starts to grow rapidly 
after deploying 60 sensors.  At the level of 80 deployed 
sensors, the average latency is higher than that of the case 
of the 4-point distributed cloud at the level of 200 
deployed sensors.  We notice that in the distributed case, 
the average latency is relatively constant and sufficiently 
low even for demanding network applications like VoIP 
[30], and with small variations only when sensor 
deployment is scaled up from 20 to 200.  Thirdly, a 
similar pattern is observed in the comparison of the 
average jitter for the two cases (see Figure 9).  In the case 
of sensor deployment in a single instance in one cloud 
only, average jitter is low until after deploying 60 sensors.  
At the level of 80 deployed sensors, the average jitter is 
already higher than that of the distributed case for 200 
deployed sensors. 
 
Overall, our limited initial results indicate distributed 
clouds has an encouraging potential to support scalable 
collaborative sensor-centric applications that have 
stringent throughput, latency, jitter and reliability 
requirements. 
 
6.4. CONCLUSION 
 
We conducted three types of experiments on FutureGrid 
to understand its performance characteristics in 
distributed clouds setting to support scalable collaborative 
sensor-centric applications.  We ported the Grid Builder 
to FutureGrid and developed virtual GPS sensors for 
managing the scaling of application-level deployed 
sensors to a large number.  We measured FutureGrid 
distributed clouds characteristics at the network, transport 
and application levels.  Although this study is preliminary, 
we observe satisfactory performance characteristics for 
network, CPU and memory demanding simulations that 
are used as tools in our experiments.  We conclude that 
coupling a flexible sensor-centric grid framework with a 
heterogeneous distributed clouds infrastructure like 
FutureGrid has the potential to effectively support the 
study of large-scale, collaborative sensor-centric 
applications that have stringent real-time and quality of 
service requirements.  
 
Future work includes a better understanding of how to 
fully utilize the potential of a single instance to 
confidently simulate the optimal or near-optimal number 
of sensors possible without worrying about system 
abnormality due risks of running out of resources in an 
instance.  Scalability in terms of using more instances per 

cloud should be incorporated to augment scalability in the 
number of distributed clouds.  
 
KEYWORDS: distributed cloud, heterogeneous cloud, 
collaboration, sensor-centric applications, scalability, 
FutureGrid 
 
6.5. ACKNOWLEGMENTS 
 
We thank Bill McQuay of AFRL, Ryan Hartman of 
Indiana University and Gary Whitted of Ball Aerospace 
for their important support of the work. This material is 
based upon work supported in part by the National 
Science Foundation under Grant No. 0910812 to Indiana 
University for "FutureGrid: An Experimental, High-
Performance Grid Test-bed." Other partners in the 
FutureGrid project include U. Chicago, U. Florida, San 
Diego Supercomputer Center - UC San Diego, U. 
Southern California, U. Texas at Austin, U. Tennessee at 
Knoxville, U. of Virginia. 
 
7. BIOGRAPHY 
 
GEOFFREY C. FOX received a Ph.D. in Theoretical 
Physics from Cambridge University and is now the 
Associate Dean for Research and Graduate Studies at the 
School of Informatics and Computing Indiana University 
Bloomington and professor of Computer Science, 
Informatics, and Physics at Indiana University where he 
is director of the Community Grids Laboratory. He 
previously held positions at Caltech, Syracuse University 
and Florida State University. 
 
ALEX HO is the CEO of Anabas, Inc. He was a staff 
scientist with the IBM Research Division and the Caltech 
Concurrent Computation Program for over ten years. He 
was the founder and co-founder of several Silicon Valley 
startups in the areas of collaboration and Internet media 
technology. 
 
EDDY CHAN is an R&D engineer.  He has conducted 
extensive research in ad-hoc wireless network and Voice 
over IP, and is focusing on message-based collaboration 
technology. 
 
8. REFERENCES 
 
1. Geoffrey Fox. FutureGrid Platform 
FGPlatform: Rationale and Possible Directions (White 
Paper).  2010  [accessed 2010 June 12]; Available from: 
http://grids.ucs.indiana.edu/ptliupages/publications/FGPla
tform.docx. 
2. FutureGrid Homepage.   [accessed 2011 January 
19]; Available from: http://www.futuregrid.org. 



3. Wenjun Wu, Geoffrey Fox, Hasan Bulut, Ahmet 
Uyar, and Tao Huang, Special Issue on Voice over IP 
edited by John Fox, P. Gburzynski: Service Oriented 
Architecture for VoIP conferencing Theory and Practice 
of the International Journal of Communication Systems 
April 13, 2006. 19(4): p. 445-461. 
DOI:http://dx.doi.org/10.1002/dac.803. 
http://grids.ucs.indiana.edu/ptliupages/publications/soa-
voip-05.doc 
4. Shrideep Pallickara, Hasan Bulut, Pete Burnap, 
Geoffrey Fox, Ahmet Uyar, and David Walker. Support 
for High Performance Real-time Collaboration within the 
NaradaBrokering Substrate.  2005 May [accessed 2011 
March 11]; Available from: 
http://grids.ucs.indiana.edu/ptliupages/publications/NB-
Collaboration_update.pdf. 
5. Ahmet Uyar and Geoffrey Fox, Investigating the 
Performance of Audio/Video Service Architecture I: 
Single Broker, in IEEE International Symposium on 
Collaborative Technologies and Systems CTS05. May, 
2005, IEEE. St. Louis Missouri, USA. pages. 120-127. 
http://grids.ucs.indiana.edu/ptliupages/publications/Single
Broker-cts05-submitted.PDF. DOI: 
http://doi.ieeecomputersociety.org/10.1109/ISCST.2005.1
553303. 
6. Ahmet Uyar and Geoffrey Fox, Investigating the 
Performance of Audio/Video Service Architecture II: 
Broker Network, in International Symposium on 
Collaborative Technologies and Systems CTS05. May, 
2005, IEEE. St. Louis Missouri, USA. pages. 128-135. 
http://grids.ucs.indiana.edu/ptliupages/publications/Broke
rNetwork-cts05-final.PDF. DOI: 
http://doi.ieeecomputersociety.org/10.1109/ISCST.2005.1
553304. 
7. NaradaBrokering. Scalable Publish Subscribe 
System.  2010  [accessed 2010 May]; Available from: 
http://www.naradabrokering.org/. 
8. Pallickara, S. and G. Fox, NaradaBrokering: a 
distributed middleware framework and architecture for 
enabling durable peer-to-peer grids, in 
ACM/IFIP/USENIX 2003 International Conference on 
Middleware. 2003, Springer-Verlag New York, Inc. Rio 
de Janeiro, Brazil.  
9. Geoffrey Fox, Alex Ho, Rui Wang, Edward Chu, 
and Isaac Kwan, A Collaborative Sensor Grids 
Framework, in 2008 International Symposium on 
Collaborative Technologies and Systems (CTS 2008). 
May 19-23, 2008. The Hyatt Regency Irvine, Irvine, 
California, USA. 
http://grids.ucs.indiana.edu/ptliupages/publications/CTS0
8_paper_final.pdf.  
10. Keith R. Jackson, Lavanya Ramakrishnan, Karl J. 
Runge, and Rollin C. Thomas, Seeking supernovae in the 
clouds: a performance study, in Proceedings of the 19th 
ACM International Symposium on High Performance 

Distributed Computing. 2010, ACM. Chicago, Illinois. 
pages. 421-429. 
http://dsl.cs.uchicago.edu/ScienceCloud2010/p07.pdf. 
DOI: 10.1145/1851476.1851538. 
11. Keith R. Jackson, Lavanya Ramakrishnan, 
Krishna Muriki, Shane Canon, Shreyas Cholia, J. Shalf, 
Harvey J. Wasserman, and N.J. Wright, Performance 
Analysis of High Performance Computing Applications 
on the Amazon Web Services Cloud, in CloudCom. 2010, 
IEEE. Indianapolis. 
http://www.nersc.gov/projects/reports/technical/CloudCo
m.pdf.  
12. Wei Lu, Jared Jackson, Jaliya Ekanayake, Roger 
Barga, and Nelson Araujo, Performing Large Science 
Experiments on Azure: Pitfalls and Solutions, in 
CloudCom. 2010, IEEE. Indianapolis. pages. 209-219.  
13. Wei Lu, Jared Jackson, and Roger Barga, 
AzureBlast: A Case Study of Developing Science 
Applications on the Cloud, in ScienceCloud: 1st 
Workshop on Scientific Cloud Computing co-located with 
HPDC 2010 (High Performance Distributed Computing). 
June 21, 2010, ACM. Chicago, IL. 
http://dsl.cs.uchicago.edu/ScienceCloud2010/p06.pdf.  
14. Jaliya Ekanayake and Geoffrey Fox, High 
Performance Parallel Computing with Clouds and Cloud 
Technologies, in First International Conference 
CloudComp on Cloud Computing. October 19 - 21, 2009. 
Munich, Germany. 
http://grids.ucs.indiana.edu/ptliupages/publications/cloud
comp_camera_ready.pdf.  
15. Judy Qiu, Thilina Gunarathne, Jaliya Ekanayake, 
Jong Youl Choi, Seung-Hee Bae, Hui Li, Bingjing Zhang, 
Yang Ryan, Saliya Ekanayake, Tak-Lon Wu, Scott 
Beason, Adam Hughes, and Geoffrey Fox, Hybrid Cloud 
and Cluster Computing Paradigms for Life Science 
Applications, in 11th Annual Bioinformatics Open Source 
Conference BOSC 2010. July 9-10, 2010. Boston. 
http://grids.ucs.indiana.edu/ptliupages/publications/Hybri
dCloudandClusterComputingParadigmsforLifeScienceAp
plications.pdf.  
16. Jaliya Ekanayake, Thilina Gunarathne, Judy Qiu, 
Geoffrey Fox, Scott Beason, Jong Youl Choi, Yang Ruan, 
Seung-Hee Bae, and Hui Li, Applicability of DryadLINQ 
to Scientific Applications. January 30, 2010, Community 
Grids Laboratory, Indiana University. 
http://grids.ucs.indiana.edu/ptliupages/publications/Dryad
Report.pdf.  
17. Katarzyna Keahey, Mauricio Tsugawa, Andrea 
Matsunaga, and Jose Fortes, Sky Computing. Internet 
Computing, IEEE, 2009. 13: p. 43-51. 
DOI:http://doi.ieeecomputersociety.org/10.1109/MIC.200
9.94. 
http://www.nimbusproject.org/files/Sky_Computing.pdf 



18. Mauricio Tsugawa and Jose Fortes. ViNe: 
Managed virtual networks in Grids.   [accessed 2010 20 
November]; Available from: http://vine.acis.ufl.edu/. 
19. M. Tsugawa and J.A.B. Fortes, A virtual network 
(ViNe) architecture for grid computing, in International 
Parallel & Distributed Processing Symposium. 2006, 
IEEE. Rhodes Island, Greece. pages. 123.  
20. Biswas, S., S. Gupta, F. Yu, and T. Wu, A 
networked mobile sensor test-bed for collaborative multi-
target tracking applications. Wirel. Netw., 2010. 16(5): p. 
1329-1344. DOI:10.1007/s11276-009-0206-x 
21. John Markoff. Can’t Find a Parking Spot? 
Check Smartphone.  2008 July 21 [accessed 2011 March 
12]; New York Times Available from: 
http://www.nytimes.com/2008/07/12/business/12newpark
.html. 
22. Geoffrey Fox, Alex Ho, Eddy Chan, and 
William Wang, Measured Characteristics of Distributed 
Cloud Computing Infrastructure for Message-based 
Collaboration Applications, in International Symposium 
on Collaborative Technologies and Systems CTS 2009. 
May 18-22, 2009, IEEE. The Westin Baltimore 
Washington International Airport Hotel Baltimore, 
Maryland, USA. pages. 465-467. 
http://grids.ucs.indiana.edu/ptliupages/publications/Senso
rClouds.pdf. DOI: 10.1109/cts.2009.5067515. 
23. Fox, G., Grids of Grids of Simple Services. 
Computing in Science and Engg., 2004. 6(4): p. 84-87. 
DOI:10.1109/mcse.2004.10. 
http://grids.ucs.indiana.edu/ptliupages/publications/Cisegr
idofgrids.pdf 
24. Geoffrey Fox. Cloud Computing for ADMI.  
2010  [accessed 2011 March 11]; ADMI Board Meeting 
and faculty workshop at Elizabeth City State University 
Available from: 
http://grids.ucs.indiana.edu/ptliupages/presentations/ECS
U-Dec16-10.pptx. 
25. TeraGrid open scientific discovery 
computational infrastructure.   [accessed 2010 November 
20]; Available from: https://www.teragrid.org/. 
26. Geoffrey Fox. Interview on FutureGrid.  2009 
September 29 [accessed 2011 March 11]; by Sander 
Olson Available from: 
http://nextbigfuture.com/2009/09/interview-of-geoffrey-
fox-director-of.html. 
27. Nurmi D., Wolski R., Grzegorczyk C., Obertelli 
G., Soman S., Youseff L., and Zagorodnov D., The 
Eucalyptus Open-Source Cloud-Computing System, in 9th 
IEEE/ACM International Symposium on Cluster 
Computing and the Grid. CCGRID '09. 18-21 May, 2009. 
Shanghai. pages. 124-131. DOI: 
10.1109/CCGRID.2009.93. 
28. Eucalyptus Open Source Cloud Software.   
Available from: http://open.eucalyptus.com/. 

29. Nimbus Cloud Computing for Science.   
[accessed 2011 March 11]; Available from: 
http://www.nimbusproject.org/. 
30. Ping computer network administration utility 
used to test the reachability of a host on an Internet 
Protocol (IP) network and to measure message round-trip 
time.   [accessed 2011 March 20]; Wikipedia Entry 
Available from: http://en.wikipedia.org/wiki/Ping. 
31. Iperf  network testing tool that can create TCP 
and UDP data streams and measure the throughput of 
network carrying them.   [accessed 2011 March 20]; 
Wikipedia Entry Available from: 
http://en.wikipedia.org/wiki/Iperf. 
32. Tim Szigeti and Christina Hattingh, Quality of 
Service Design Overview. 2004: Cisco Press. 
http://www.ciscopress.com/articles/article.asp?p=357102
&seqNum=3 
 
 


